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The objective of this paper is to outline a new approach to analyzing the geometry of 
macro-molecules and investigating important physical properties by means of simulations. The 
classical method of force field calculations requires minimizing the energy as a function of the 
Cartesian coordinates of all atoms. Due to the large number of variables this method is limited 
to relatively small molecules. We describe an approach to overcome this difficulty. On the one 
hand, the number of free variables is effectively reduced by assembling certain groups of atoms 
into configurational structures with considerably less degrees of freedom. In this way we build 
up a whole hierarchy of coordinate spaces with decreasing dimensions. On the other hand, 
approximations to the energy function with respect to these variables are constructed using 
methods from the theory of splines and radial basis functions. The hierarchical features of 
wavelet decompositions are utilized to exploit the physical importance of the different force 
field constants on the biological function of the macro-molecule. 

1. Introduct ion  

In  r ecen t  years ,  cons is ten t  force  field ca lcu la t ions  have  p r o v e d  to  be a p o w er fu l  

m e a n s  to  c o m p u t e  the  3D-s t ruc tu re  o f  b io logica l  m ac ro -m o lecu l e s .  T h e  s t ruc tu re  

o f  a m o le c u l e  in space  is de te rmined  by  the in t e rac t ion  o f  its n a t o m s  hav ing  the  Ca r -  

tes ian c o o r d i n a t e s  xi  E l~ 3, 1 ~< i ~< n. I n t e r ac t i o n  energies  are  desc r ibed  by  ana ly t i -  

cal func t ions  de r ived  theore t ica l ly  f r o m  q u a n t u m  m ech an i c s  a n d  empi r ica l ly  f r o m  

exper imen t s .  T h e  ene rgy  funct ions  depend  on  d is tances  b e t w e e n  a t o m s  as well  as 

on  b o n d  a n d  t o r s i on  angles which are  c o m p u t e d  f r o m  the  c o o r d i n a t e s  xi. F o r  the  
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total internal energy Etotal of the molecule typical force fields are given by (see e.g. 
[1-31) 

E = Etotal = Ebond n u Eangle d- Etorsion -t- ENB, (1) 

where for example 

Ebon  = gs (llx;- g i l l -  R00) 2 
(id') e/bona 

denotes the energy contribution of all pairs of bonded atoms and 

 tosio  
( id,k,l) E Itor,ion v e Jqkl 

denotes the energy contributions arising from torsion angles ~b/jkt formed by all 
sequences of four consecutively bonded atoms i,j, k, and l. Here 6~/jkt is a phase fac- 
tor and Koukt~, is a force constant as defined by the force field. All the constants 
depend on the atoms involved as well as on their structural neighbours. For the 
energies of bonding angles between three atoms connected by two bonds similar 
formulas hold. The non-bonding energie ENB including hydrogen bonds, van der 
Waals forces and the long range Coulomb forces is a sum over all pairs of non- 
bonded atoms. It should also be mentioned that especially for ENB there exist differ- 
ent approximative descriptions [3,4]. In specific examples we always refer to the 
implementation of consistent force field calculations as done in the AMBER pro- 
gram package [3]. Although the approach described below is very general in nature 
we will refer mainly to DNA, as a first specific example. 

A stable three dimensional structure of the molecule corresponds to a minimum 
of the total internal energy Etotal. In consistent force field calculations, the mini- 
mum of the total internal energy is usually computed iteratively by means of gradi- 
ent methods. Describing the location of atoms by their Cartesian coordinates 
requires minimizing functions of 3n variables: 

Etotal : ~3n  . .~ ]i~, 

but, of course, not all configurations are feasible. Within the minimization step 
the function and its partial derivatives have to be evaluated and a new improved 
estimate for the actual configuration with a lower total internal energy is calcu- 
lated. 

A major drawback of the whole method is the high dimension (approximately 
100-10000) of the space of free variables. It is not surprising that this leads to 
severe problems in the minimization process as observed e.g. in [2]. However, as we 
will point out, the large number of degrees of freedom can be reduced signifi- 
cantly. 

The main goal of this paper is to outline new theoretical and practical methods 
which facilitate computing the structure of biological macro-molecules of realistic 
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size in three dimensional space by means of energy minimization. The motion of 
atoms in biological macro-molecules cover a wide range of time scales. The fastest 
vibrations consist in the motion of pairs of chemically bonded atoms oscillating 
around their average distance. The periods of these vibrations are in the order of 
10 -15 seconds. This type of motion is highly localized and largely independent of 
the global conformation of the molecule. On the other hand, the folding of proteins 
range in the time scale of 10-3-102 seconds or even longer. The biological function 
is mostly related to the slower type of motions covering the time scales from 10 -9 
seconds and above, where always many atoms are involved. For any conformation 
R ~ R 3n, one can identify directions related to fast or slow motions thus decompos- 
ing the space of motion, the tangent space 9- to R, into "fast" (9-F) and "slow" 
(9-s) subspaces: 

9" = 9"F @ 9"s- 

The method proposed in this paper takes advantage of the fact that for large mole- 
cules the dimension of 9"s is considerably smaller compared to the dimension of 
9"F. It is designed to reduce the number of degrees of freedom by taking into 
account only those which are essential for the biological function of the molecule. 
As a first step the atoms of the molecule are grouped into relatively rigid substruc- 
tures. In the case of DNA, such substructures may consist of the bases, the ribose 
and the phosphate atoms (see fig. 3B). These substructures can again be grouped to 
define a hierarchy of substructures. This allows us to adapt the accuracy of each 
part of the computation to the particular need of the problem under considera- 
tion. 

In summary, our approach facilitates calculating the 3D-structure of large, bio- 
logically relevant macro-molecules. This should help to understand their interac- 
tions and biological functions. 

2. Reduction of  the degrees of  freedom 

Before describing the general principle of reducing the number of the degrees of 
freedom we mention two cases where hierarchical principles were successfully 
applied for the calculation of 3D-structures. 

Example 1 
First trials to calculate the structure of a 40 base pair DNA molecule resulted 

in a straight helix axis although experiments strongly suggested that the helix axis is 
curved [5]. Inspection of the resulting structure revealed significant local perturba- 
tions. In spite of optimizing all degrees of freedom of this large molecule only small 
deviations from the initial structure were observed. So it seems that the method 
could not escape from a local minimum. So instead, a hierarchical procedure was 
applied in [6]. The structures of smaller parts of the total sequence were calculated 
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separately, followed by optimizing the transitions from one part  to the other. The 
global structure was constructed from these parts and used as the starting config- 
urat ion for the optimization of all parameters. Now the resulting global structure 
exhibited strong curvature of the helix axis which is in agreement with the experi- 
mental  results [7,8]. Further theoretical predictions deduced from this structure 
were verified experimentally [9-11] (see fig. 1). 

Example  2 
Hol l idayjunct ions  are transition structures during recombination of  D N A  dou- 

ble strands. In this structure individual DNA single strands are exchanged between 
different double strands. The three dimensional structure depends on environmen- 

Fig. 1. The optimized structure of the DNA sequence d[(GCTCGAAAAA)4 • (TIWVFCGAGC)4 ] 
in stereo [6]. 
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tal conditions. To compute this configuration, the structure of the double helices 
of the four arms was kept fixed, however, their relative orientation was optimized 
with respect to variable torsion angles in the phosphate chains connecting the helix 
arms. The optimal configuration was computed for two different salt concentra- 
tions. For low salt concentration the helix arms form a planar quadratic structure 
with an open centre at the crossing point, whereas for high salt concentration the 
base pairs at the crossing point stack on one another thereby forming an X-like 
structure with two continuous double helices stacking through the crossing point 
[12] (see fig. 2). The corresponding DNA sequences were synthesized and the 
structural predictions deduced from the theoretical model could be accurately veri- 
fied experimentally [13-15]. The DNA 4-way junction structure is not in agree- 
ment with that presented in textbooks and suggests revising the current model of 
recombination. 

To reduce the number of free variables in general we assemble certain groups of 
atoms into one configurational structure which can be described by fewer variables 
than the number of all atom coordinates involved. For instance, a rigid substruc- 
ture of several atoms can be characterized by the Cartesian coordinates of one 
atom and three additional variables defining the relative position of the whole rigid 
structure in space within a global coordinate frame. The parameter space for a 
rigid subunit is ~3 x SO(3), the three Euler angles being a very convenient parame- 
trization for the compact manifold SO(3). 

In the case of D N A  the sequential structure [16] permits a division into three 
types of natural substructures: ribose, base and phosphate (see fig. 3). If, for exam- 
ple, guanine is described as a rigid subunit, the number of free parameters is 
reduced from 33 to 6. Experimental data and results of theoretical computations 
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Fig. 2(A). Schematic drawing of the open (left) and folded (right) structure of  a DNA 4-way junc- 
tion. The letters H, R, X, and B denote the DNA arms. The arrows indicate the strand direction. The 

4-way junction is a right-handed non- crossed structure with antiparallel strands 
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Fig. 203). Helical drawing of the open (left) and folded (right) structure of a D N A  4-way junction. 
The strands are numbered 1 to 4, their direction indicated by the chemical nature of their ends. The 
arms are labelled with the letters B, X, R, and H. In both structures the major grooves lie on one, the 

minor grooves on the other side of the structure offering different surfaces to proteins. 

show that, at least in a first approximation, the four different bases can be viewed 
as rigid. The same is true for the phosphate group including the two neighbouring 
O-atoms in the strand of the DNA molecule. All rigid subunits are characterized by 
six variables from N 3 x SO(3). 

In contrast, one cannot regard the ribose group as a rigid substructure [17]. It is 
known that the configuration of the ribose part can be described as a function of a 
periodic variable, the so-called pseudo-rotation angle p ~ S  1 (cf. e.g. [18-22]). So 
the state of the structure is parametrized by ll~ 3 x SO(3) x S 1, a manifold of dimen- 
sion 7. Algorithms to convert the coordinates of DNA subunits mentioned above 
into atom coordinates and vice versa have been implemented in F O R T R A N  [23]. 

The parameters of a subunit determine the coordinates of all its atoms. If we 
denote the space of all parameters of all subunits by U, then we have a map 

p : U - + ~  3n , 

which assigns to every point of the parameter space U the sequence of the coordi- 
nates of all n atoms of the configuration. For instance, for DNA molecules with N 
bases, U has the form 

U = Vl x . . .  x V3N, (2) 

where Vak, V3k+l, and V3k+2 denote the parameter spaces of the three parts (phos- 
phate, ribose, and base respectively) of base k so that 
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Fig. 2(C). Model of a DNA 4-way junction, bases with full van der Waals radius, sugar-phosphate 
backbones as ball- stick model. The strands are numbered 1 to 4, their direction indicated by the che- 

mical nature of their ends. The arms are labelled by B, X, R, and H. 

V3k = IR 3 X SO(3) = Vsk+2, V3k+l = N 3 x SO(3) x S x . 

Thus p itself is a Cartesian product of mappings p(i) acting on the respective compo- 
nents Vi. As the above example of guanine indicates the image p(U) is a subset of 
]~3n of significantly lower dimension which, in effect, is a proper reduction of 
degrees of freedom (see [23]). This will be important for the evaluation ofE(p(u)). 

The process of introducing spaces of coordinates can be iterated to establish a 
whole hierarchy of coordinate sets Ui satisfying 

p ~ ( u m )  ~ p ~ _ ~ ( V ~ _ l )  ~ . . .  ~ po(Uo) = Uo = ~t s~ 

and dim(Ui) < dim(Ui_l) for 1 <~i<<.m. 
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Fig. 3(A). Chemical presentation ofa DNA strand of the base sequence dACGT. 

In the case of  D N A  molecules the next level of such a hierarchy could be defined 
by joining related phosphate,  ribose, and base groups to form a new substructure, 
for example a base pair. 

3. Approximating energy functions 

We now consider one particular coordinate space U representing N groups of  
atoms and hence having the form (2). In (1) the total internal energy E was defined 
as a sum of  functions depending on the cartesian coordinates of  two, three, or 
four atoms [1]. As all the atoms belong to exactly one of the N groups, the terms in 
the expression (1) for E can be rearranged so that E has the form 
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Fig. 3(B). Division of the DNA structure into 3 types of substructures: phosphate group, ribose, and 
base (here: guanosine and cytidine). Most interactions in the force field (1) concern only pairs of 
atoms. But there are also interactions involving three and four atoms. The three atom interactions are 
found between atoms (i,j, k), if atoms (i,j) and (j, k) are chemically bonded; the four atom interaction 
(i,j, k, l) requires bonds between pairs (i,j), (j, k), and (k, I). The substructures are defined in such a 
way that despite the four center interactions at the atomic level, only interactions between pairs of 

substructures have to be taken into account. 

i ~ 11 (i j )  ~ h (ij,k) ~ I3 

+ ~ f(i,j,k,l)(vi, vj, vk,vl), v i~Vi ,  
( i,j,k,l) e I4 

(3) 

where Is denotes the set of  all s-tuples of  distinct groups which contr ibute  to one 

of  the terms in the energy function, and we write briefly i instead of  (i) when s = 1. 

Here,  for any tuple t els , f t  is the corresponding energy distribution. M o r e  pre- 

cisely, J} is the internal energy of  group i whereas J~,j contains all energy contr ibu-  

tions of  2-, 3-, or 4-tuples of  atoms with atoms belonging to groups i and j ,  similarly 

forfi, j,k andfi,j,k,t. We should remark at this point  that  most  force field approxima-  
tions consider only energy contributions depending on up to four  atoms,  so that  

there are no terms in our energy expansion (3) depending on more  than four  

groups.  
In the case of  D N A  molecules the groups in U1 are defined such that  all energies 

arising f rom distance or angle interactions can be expressed by  the relative coordi-  

nates of  only pairs of  groups (see fig. 3B). So 13 and I4 are in fact  empty.  W e  will 
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restrict our further discussion to  this case, although the generalization is straight- 
forward. 

Expression (3) for E can be evaluated at any point of the coordinate space U, 
using formula (1) and the map p. Recall that our ultimate central objective is to 
combine a reduction of degrees of freedom with an efficient evaluation of the 
energy function E. While the reduction is taken care of by the application of p, our 
approach to speeding up the evaluation is based on approximating the components 
ft, tels, in (3) by suitable functions which, on the one hand can be evaluated at 
low cost and whose representation on the other hand exploits invariances of the 
energy components ft. Moreover, the special type of approximating function has to 
be selected so as to minimize the effort of optimization. 

As an example, we mention the following facts used in our implementation 
[24]. As the position of subunits within the global coordinates is described by a 
point in N 3 x SO(3), the relative position of two groups is again a parameter from 
N 3 × SO(3). Thus we can regard J~j as depending rather on 1I/x Vj modulo the 
space of Eucledian motions than on V/x Vj itself. For rigid subunits this space is 
N 3 x SO(3). For ribose groups of course we have an additional parameter in S 1 . In 
the case of two interacting base groups, for example, we have a parameter space 
of dimension six, while two interacting ribose groups define a parameter space of 
dimension eight. Altogether, we have 28 bonding or non-bonding interacting pairs 
of groups with energies parametrized by six to eight parameters (see table 1). The 
ribose group is the only group with non-constant inner energy which depends on 
the pseudo-rotation angle in S 1. 

The energy between two groups has to be expressed in these new variables. This 
can be done on a relatively fine grid in corresponding parameter spaces of six to 
eight dimensions by computing the usual Cartesian coordinates of all atoms using p 
and then evaluating the analytical expression (1) for the total energy of the two 
groups under consideration. As a result, the exact value of the total internal energy 
is known at the grid points. To evaluate the energy at arbitrary points of the para- 

Table 1 
Number of different pairs of interacting groups and dimension of parameter spaces describing the 
state space of interaction. C, G, A, Tdenote bases, R ribose, and P phosphate. Note that P and R are 
bounded in two different ways in the strand ofa DNA molecule. 

Interacting groups Pairs Manifold Dim 

Non-bonding: 
C, G,A, T ,P  15 ]R 3 × SO(3) 6 
C,G,A, T, PwithR 5 1R 3 x SO(3) x S 1 7 
RwithR 1 R 3 x SO(3) x S l x S 1 8 

Bonding: 
C,G,A, Twi thR 4 R 3 × SO(3) x S 1 7 
PwithR 2 R 3 x SO(3) x S l 7 
R (internal energy) 1 S 1 1 
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meter space, an approximating or interpolating function to these data has to be 
computed. This can be done on the whole grid or on parts of it. Due to the structure 
of the energy function, several choices of function types are possible. The actual 
choice will be determined by approximation and stability properties as well as 
numerical efficiency in the minimization process. 

Candidates for such approximations are linear combinations of radial basis 
functions (see e.g. [25]). Each basis function is only distance dependent and thus has 
radial symmetries. Such linear combinations reproduce well some structural prop- 
erties of the energy functions, especially for non-bonding interactions and larger 
distances. However, there are two principal dit~culties. Since these functions are 
global, the cost of evaluation depends on the number of basis functions. While in 
the bivariate case multipole expansions seem to lead to more efficient evaluation 
schemes, the higher dimensional case which is relevant in the present context, is less 
understood. Secondly, a principal difficulty lies in interrelating rather different 
physical scales. On the one hand, local effects on atom level have to be resolved 
while, on the other hand, macroscopic effects should not be neglected. It should 
therefore be important to choose mathematical representations that reflect such 
hierarchies of scales in an appropriate fashion. In this regard, spline functions and 
wavelets are more promising than radial basis functions. Due to their local struc- 
ture the costs of evaluating the approximating function at a point remains indepen- 
dent of the discretization level. Moreover, efficient and stable subdivision 
techniques facilitate local refinements. This provides a most natural framework for 
employing adaptive methods which are ultimately indispensible for handling pro- 
blems of interesting size. 

The theory of spline functions is very well developed for regular grids on Eucli- 
dean spaces of arbitrary dimensions and also for some types of parameter spaces 
with periodic variables. Both types of variables can be combined by tensor product 
constructions. Nevertheless, appropriate multiresolution setups and wavelet 
expansions relative to such parameter manifolds have yet to be constructed. 

The following remarks are based on our numerical experience with energy func- 
tions defined on the manifolds mentioned above on the first level of the hierarchy 
of coordinates [26]. In order to combine the principal advantages of both types of 
approximations one could consider functions of the form 

f t ( x ,  =  (Ixl) • R(x) + (1 -  (Ixl)) • w(x, ( x ,  ~ 3  X SO(3). 

Here cr : IRe0 --'* [0, 1] is some suitable sigmoidal function satisfying tr(r) -+ 1 for 
r ~ oo and tr(r) ~ 0 for r ~ 0. R should be a linear combination of just a few radial 
basis functions, while w(x, O) should be an expansion of wavelet type basis func- 
tions (see e.g. [27-29]) which, in view of the form of or, have to be determined only 
on essentially bounded domains. The advantages of wavelet representations lie in 
the following facts. The coefficients in wavelet expansions reflect the behaviour of 
the function relative to different scales. They are extremely suitable for adaptive 
data compression [28] depending on the required information. Finally, one expects 
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e.g. from [30] that such expansions are particularly well suited for preconditioning 
gradient methods for optimization purposes. 

We find the possibility of combining the hierarchical organization of substruc- 
tures described above with the hierarchical features of wavelet decompositions par- 
ticularly intriguing and promising. 

4. Splines on compact manifolds 

The energy distributions ./(id) are functions of variables in ]]~3 SO(3), and S 1. 
Since spline functions on products of manifolds can easily be formed by taking ten- 
sor products, it is important to have suitable spline functions on each individual 
manifold. For ~3 as well as for S 1 the theory is well developed. In fact, S 1 was for a 
long time the only compact manifold where explicit descriptions of splines were 
known. It was only in 1991 when Schumaker and Traas [31] gave a satisfactory 
description of spline functions on S 2, the simplest 2-dimensional compact mani- 
fold. We give a short description of their method as it can be utilized as a guideline 
to constructing splines on compact manifolds of similar type. 

The splines on S 2 are obtained as tensor products of polynomial and trigono- 
metric splines. In this case the sphere S 2 can be covered by only one chart 

V:={(0 ,~b) : - r~ /2~0~<r t /2  and 0~<~<2~} 

with 0 = -r~/2 corresponding to the south pole S of the sphere and 0 = ~/2 to the 
north pole N. A differentiable funct ionf  on S 2 and hence on V needs to fulfill the 
periodicity conditions 

f(O, O) = f(O, 2~), -r~/2 ~< 0 ~<~/2, 

f ( -~ /2 ,  dp) =fs  andf(~/2,4~) =fN,  for all q$, 

and it is known that the following conditions on the partial derivatives o f f  

fee(O,O) =fee(0,2rt), -~/2~<0~<rr/2, 

fo(-=/2,~) = Ascos(q$) +Bssin(q$), 0~<q$~<2r~, 

f0(~/2,4~) = Aucos(q$) + BNsin(~), 0~<q$~<27r, 

are equivalent t o f  e C 1 (V). Here, As, AN, Bs, and BN denote suitable constants. 
These conditions suggest to consider spline functions of the form 

M N 

f(O, cb) := Z ~ cijBi(O)Tj(cb)' (4) 
i=l j=l 

where Bi(O) = N~'(0), i = 1 , . . . ,  M, are the usual normalized polynomial B-splines 
of order m associated with a suitable knot sequence on the 0-axis. To fulfill the con- 
ditions ons~ at the poles it is convenient to select the functions T1, . . . ,  TN to be peri- 
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odic trigonometric B-splines of odd order n = 2q + 1. One can then show that for 
rn = n = 3 the conditions for the tensor-product funct ionf  to be C 1 have the form 

 c=O (5) 

with a (4N + 2M - 6) x M ( N  - 2) matrix B (see [31]). 
The explicit representation of spline functions on S: can be obtained e.g. 

through interpolation or least squares approximation which leads to a large sparse 
system of equations which has to be solved subject to the condition (5). 

Once we have determined a representation of the form (4) we wish to compress 
it in order to facilitate efficient subsequent evaluations during the optimization 
process. By this we mean that we seek for a sufficiently good approximation to f 
which involves as few as possible coefficients relative to a suitably chosen basis [28]. 
Here, "suitable" means that the coefficients in such a representation should reflect 
the structure o f f  relative to different scales. Thus wavelet type bases suggest them- 
selves as candidates. 

Wavelet bases for polynomial spline functions with equidistant knots are well- 
known by now [29]. The idea is to view the spline space 

8. := span{Nm(2 "- - j ) : j ~ Z }  

as the result of consecutive refinements of the spaces gt, l ~< n. Denoting by Wt the 
orthogonal complement of gt in 8t+1, 

W~ := &+l O gt, 

one has 

n-1 

g, = g0 @ ( ~  Wt. 
1=0 

The objective is then to construct a spline ~,e gl of possibly small support such 
that 

Wt = span{~'(2 t" - j ) :  j e Z } .  

~u is called wavelet. Thus, in a wavelet expansion of f ,  the coefficients correspond- 
ing to high values of l reflect those contributions o f f  which can be only seen on a 
fine grid. 

If one could handle the trigonometric case in a similar fashion, a tensor product 
wavelet expansion for (4) would be readily available. However, for trigonometric 
B-splines the situation is slightly more complicated. Nevertheless, wavelet type 
bases can be constructed using information from the theory of so-called E-splines 
which have been thoroughly studied (cf. [32]). 

In the relevant case of SO(3) it is natural to use Euler angles (e.g. [33]) for the pur- 
pose of parametrization. We prefer to use the following map r on the 3-dimen- 
sional cube C := [0, 2re] x [0, 2rc] x [-~/2,  n/2] 
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T: C ~ (¢, ~u, 0) ~ M(¢ ,  ~t, 0) e SO(3), 

where M(¢ ,  ~/, 0) is defined by 

cos ~u cos 0 - cos ¢ sin ~u - sin ¢ cos ~u sin 0 sin ¢ sin ~, - cos ¢ cos ~, sin 0 '~ 
/ 

sin ¢ cos 0 cos ¢ cos ~u - sin ¢ sin q/sin 0 - sin ¢ cos ~, - cos ¢ sin ~u sin 0 / " 

sin 0 sin ¢ cos 0 cos ¢ cos 0 ] 

The identity in SO(3) then has a regular neighbourhood and those rotations 
describing the usual relative positions in the D N A  double helix have well defined 
pre-images. In fact, in this way one can cover the whole manifold by one coordinate  
chart.  However,  the compatibili ty conditions for C 1 functions with respect to this 
parametr izat ion turn out to be significantly more complicated. So it is obviously 
necessary for a continuously differentiable function f : C ~ SO(3)--*-]R to fulfill 
the following periodicity conditions: 

f (0 ,  ~u, 0) = f ( 2 n ,  ~', 0), 

f ( ¢ ,  0, 0) = f ( ¢ ,  2n, 0), 

f¢(0, N, 0) =/¢(21t, N, 0), 

f¢(¢ ,  0, 0) = f~,(¢, 2n, 0), 

0 ~< ~ ~< 2re and - ~/2 ~< 0 ~< n /2 ,  

0~<¢~<2n and - ~/2~<0~<n/2, 

0 ~ N ~< 2re and - n /2  ~< 0 ~< ~ /2 ,  

0~<¢~<2~ and - rc/2~<0~<~/2. (6) 

Condit ions on the boundary  faces C+ := {(¢, ~v, +7r/2) e C} have a more compli-  
cated structure due to the singular behaviour of T on C±. More  precisely, one can 
prove the following result [34]: 

THEOREM 4.1 
Let F : SO(3) ---~ ]~ be a function and d e f i n e f  b y f  := F o ~- : C---~N. Then F is 

C 1 if and only if the following conditions hold: 

(1) f fulfills the periodicity conditions (6). 
(2) there are realvalued 2~-periodic C I functions F± as well as 2rr-periodic continu- 

ous functions A±, B± such that 

and 

f ( ¢ ,  q/,-t-TO/2) = F± (¢ 5= g) 

f0(¢, ~,-t-n/2) = A±(¢ + ~,) cos ¢ + B±(¢ 4- ~,) sin ¢ 

for0~<¢~<2~ and 0~<~u~<2n. 

The construction of  corresponding C I wavelets based on this result on SO(3) is cur- 
rently under  investigation. 

An alternative possibility is to tolerate the lack of  regularity on the 1-dimen- 
sional submanifolds S± :=-r({(¢,~u,±n/2)})  of SO(3), which are essentially 
defined by 
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0 q=sin(¢+~u) q=cos(¢±~,) 
~-(¢, ~,,=t=_)~ = 0 cos(¢ ± ~u) - sin(¢ =t= ~u) ) , 

+ l  0 0 

and to reparametrize if necessary. More detailed information on these investiga- 
tions will be given elsewhere [3 5]. 
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